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The blocking probability is computed by assuming a thermodynamic limit when 
the number of stages increases above a certain value. In this limit we exhibit a 
set of two algebraic equations which gives the blocking probability as a function 
of the traffic demand. A comparison with a computer simulation of the system 
gives an excellent agreement. 
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1. I N T R O D U C T I O N  

In  this paper, we consider the application of the the rmodynamic  concepts 
to the study of connect ing networks such as those found in telephone 
systems as illustrated in Fig. 1. 

Basically, the problem is to obtain all possible connections between N 
inputs and  N outputs given by the permutat ion group by means of a 
physical structure. This could, for example, be an N • N matrix. For  
telephone applications in which the value of N can reach several thousands, 
this hardware  assembly, requiring N 2 crosspoints, is obviously quite diffi- 
cult to make. The technological solution, therefore, generally consists in 
breaking this large matrix into much  smaller ones linked in such a way to 
enable the realization of all connections between inputs and outputs. 
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Fig. 1. Connecting systems. 

The main feature of such a system is that both the connecting network 
and the control unit contain thousands of components giving a large 
number of possible combinations (microscopic states). 

Considering the number of different possible configurations, 
A N = ~N=o(CiN)2i! , the minimal number of (binary) components required is 
asymptotically equal to C N = N l o g N - 1 . 4 4 3 N  (N~oe) .  (~) Unfortu- 
nately, this ideal structure is unknown and we have to approximate this 
lower bound by the use of blocking networks where a new demand for 
connection is refused if there is not at least one free path between the input 
and the output concerned. 

Our problem is to compute the probability of such an event (blocking 
probability) for a given level of the offered traffic. We recognize the 
similarity of this problem with transport problems in random media, e.g., 
percolation. However, an important difference lies in the possibility to 
provide the system with a certain intelligence. The control unit has a 
detailed knowledge of the evolution of the system state and can act in 
consequence.(2'3) 

Two procedures are possible: 
(a) The implementation of nonrandom routing policies which consist 

in a systematic choice among all possible free paths so that the probability 
of future blocking configurations is minimized. 

(b) The implementation of algorithms which rearrange the calls giv- 
ing rise to a blocking configuration in order to accept the blocked demand. 

In this paper, we shall leave aside this important feature to consider 
the system in random selection mode whereby a path is chosen at random 
among those which are free. This random strategy provides an upper bound 
to the blocking probability or, in other words, it qualifies the worst 
behavior of the system. 

The blocking probability is a principal measure of network perfor- 
mance and much study has gone into its estimation. (a-s) 
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We propose a new theoretic approach of the problem, for multistage 
Clos networks, based on statistical mechanic concepts such as the thermody- 
namic limit. 

This approach has given a very good agreement with computer simula- 
tion results (2) for three-stage networks. 

To obtain the multistage network, we start from a three-stage network 
and replace each central matrix itself by a three-stage network, thus 
obtaining a five-stage network. We repeat this operation until we obtain an 
assembly of identical components (matrices of size n • n) arranged in 
(2K + 1) stages (see Fig. 2). 

It is interesting to note that such networks repeat their structure at a 
smaller scale where the basic element is still a three-stage network. 

In fact the central idea will be the invariance of the network blocking 
probability (a macroscopic quantity) with respect to its size. Of course this 
property is true only in the limit K ~  m. 

One can see that for n = 2, the number of 2 • 2 switches is equal to 
( N l o g N -  0.5N) and which is very close to the ideal lower bound Cu. 

The homogeneity of the hardware used, the optimal number of compo- 
nents, and the larger combinatorial power are the important properties of 
this class of networks which have long been an important feature of tele- 
phone exchanges. Moreover, these structures are giving rise to considerable 
interest in array computer architecture (9) for connecting memory blocks to 
processing elements. 

2. THERMODYNAMIC LIMIT 

In the thermodynamic limit, according to a particular prescription, we 
let the system become sufficiently large to be able to neglect states which 
occur with an insignificant probability. This means practically that above a 
critical size, by, say, doubling the system we do not change its average 
behavior. We shall call this property extensivity. (2) 

For the three-stage Clos network defined in Fig. 3, the extensivity of 
the structure allows us to give an expression of the blocking probability 
independent of the parameters N and b (2'1~ 

t,~(n, tE ) _ n -- 1 t~(2-- te) n-~ (1) 
n 

where the Bernoulli simultaneous connection distribution for inlet and 
outlet matrices is assumed, t e being the traffic loaded per inlet line by the 
use of a random routing strategy: 0 < t E ~< 1. 

In multistage systems, the thermodynamic limit is reached by increas- 
ing k, keeping constant n in such a way that to obtain the next structure 
(with a number of inlet and outlet lines multiplied by n) we have just to 
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Fig. 2, Recurrent  construction of a multistage Clos network. 

consider n identical former  structures and  add  as first and  last stage two 
columns of matr ices  of size n X n (Fig. 2). 

The  compute r  simulations conf i rm that, following the ment ioned  pre- 
scription, for a given traffic, the blocking probabi l i ty  tends to a constant  
(Fig. 4), so that  we can assume that  above  a critical value of k we have  

e ~ ( n ,  tE)  = ~ ( n , k ,  tE) = e ~ ( ~ , k  - 1 , rE)  (2)  
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and finally we get 

(1 - PB)to 
t E -  l _ P ~ t o  (4) 

Expression (4) allows us to display (2) as a function of the traffic de- 
mand t o . 

3. COMPUTATION OF THE BLOCKING PROBABILITY 

It is important to consider a (2k + 1)-stage Clos network as a three- 
stage one, where central matrices are independent blocking subsystems with 
2 k -  1 stages (Fig. 2). We represent this feature of the system in Fig. 5, 
where the pair of inlet and outlet matrices (i, j )  characterizing the new 
demand of connection are linked by all possible paths through the n central 
subsystems. 

Two situations lead to a blocking state, as shown in Fig. 6. 
(a) Mismatch due to the recursive three-stage Clos structure: any 

central subsystem has at least one input or output link already busy. 
In a real three-stage Clos network the central subsystems are strictly 

nonblocking and (a) is the only situation to be considered. 
Now these subsystems have a blocking probability and we must take 

into account the following new situation. 
(b) At least one subsystem has idle input and output links. We consider 

the set of such subsystems and the demand of connection will not be filled 
if none of the elements of this set cannot accomodate it. 

In the assumption of random routing strategy, the extensivity relation 
(2) means that in the thermodynamic limit the blocking probability of the 
global system equals the blocking probability of any central subsystem, so 

t~ 

INLET MATRIX 

CENTRAL SLI~.$YST E H 5 

tE 

LET MNmx 

Fig. 5. Multistage Clos network; graphical representation. 
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\ 

BU$~ iNPUT ~ TPUT LINKS 

Fig. 6. (a) Mismatch due to the recursive three-stage structure. (b) Blocked central subsys- 
tem. Although the input-output link is idle, the hachured subsystem is in a blocking state. 

that in agreement with (a) and (b), we write 

es(n, tE) =pB(n, te) + [1 --pB(n, tE)]a(n,e~,te) (5) 

where, assuming the Bernoulli's offered traffic, pB(n, te) is given by (1). 
G(n, PB,te) is the conditional probability of not being able to connect 
matrices i and j ,  through one of the central subsystems, on account of a 
blocking situation described in (b): 

n - I  n -1  

G = ~, ~, q~(te)Ak,m(p~)qm(te) (6) 
k = 0 m = 0  

where qk(te) is the probability to find k busy input (or output) links: 

and Ak, m the probability to find at least one subsystem satisfying (b), when 
k input links and m output links are busy. 

Hence the problem will be to evaluate Ak,m, which in our assumptions 
is such that 

Ak,m = Am,k (8) 

Example: n = 2. We have to determine three terms (Fig. 7): 
(i) A0, 0, the probability to be blocked even if all the input and output 

links are idle, 

Ao,o = p 2  

(ii) A l,o, one input link is busy, 

Al,0~-" PB 
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k = o  m : o  k : l  m = o  k : l  m : 1 

Fig. 7. Blocking configurations described in Fig. 6b. n = 2, k inputs links and m output links 
are busy. 
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Fig. 8. 
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Blocking probability in the thermodynamic limit. Comparison between the theory and 
the computer simulations, n = 2. 

(iii) A 1,1, one input link and one output link are busy, 

AI,] = PB 

Introducing these values in (6) and (5) we get 

PB = -~-+ 1 -- (1 _ te )2PB2 dr_ 2te( 1 _ tE)p  ~ + 

Combining (9) and (4) we obtain numerically P~(2, tD). Figure 8 shows the 
agreement between this solution and the values measured from computer 
simulations. 

E x a m p l e :  n = 4. W e  have to determine ten terms of A~, m. It is easily 
verified that (see Fig. 9) 

Ak,0= PB 4-k, k = 0 , 1 , 2 , 3  
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k = o  m = o  k = l  m = o  k = 2  m = o  k = 3  m = o  

Fig. 9. Blocking configurations described in Fig. 6b. n = 4, k input links and m output links 
are busy. 

For A ~,j, we have four possible configurations (Fig. 10), so we obtain 

(P~ + 3P 2 ) 
A~'I - 4 

For A2,1 , also four possible configurations (Fig. I 1): 

A2'~ - 2 

For A2,2, five possible configurations (Fig. 12): 

(P~ + 4 P . )  
AZ2 - 5 

For A3,1, three possible configurations (Fig. 13): 

A3,1 = P~ 

For A3,2, also three possible configurations (Fig. 14): 

A3,2 = PB 

For A3,3, only one configuration (Fig. 15): 

A3,3 = PB 

To summarize, 

C + 
Ak,m = 4 

2 
PB PB 

PB 2 PB" 

e2 +/'B 
2 PB 

P~ + 4P B 
5 p~ i 

P8 P~ 

k,m = 0,1,2,3 (10) 

As in the above example, introducing (10) in (6) and (5), considering (4) we 
obtain numerically PB(4, tD). 

Figure 16 shows the agreement with our computer simulations. To 
generalize the calculation of Ak, m we have to distinguish two families of 
blocking configurations: 
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k=2  m=  2 

Fig. 10. Blocking configurations described in Fig. 6b. n = 4, k input links and m output  links 
are busy. 

k= l  m= 1 

Fig. 1 l. Blocking configurations described in Fig. 6b. n = 4, k input links and rn output  links 
are busy. 

k = 2  m = l  

Fig. 12. Blocking configurations described in Fig. 6b. n = 4, k input links and m output  links 
are busy. 

k = 3  m = l  

Fig. 13. Blocking configurations described in Fig. 6b. n = 4, k input links and m output links 
are busy. 
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Fig. 14. 
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k = 3  m = 2  

Blocking configurations described in Fig. 6b. n = 4, k input links and m output links 
are busy. 

Fig. 15. 

k = 3  m = 3  

Blocking configurations described in Fig. 6b. n = 4, k input links and m output links 
are busy. 
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Blocking probability in the thermodynamic limit. Comparison between the theory 
and the computer simulations, n = 4. 
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(I) If k + m < n - 1, all the possible blocking configurations are of 
type described in (b). 

(II) If k + m >1 n, to calculate Ak, m we must forget all the possible 
blocking configurations of type described in (a), induced by mismatches 
among busy input and output links. 

If (I) is true, we have 

( k ) ( n k )  
Ak,,n= ~ - - B P ' - k - "  m - - j  j , n > k >~ m ( l l a )  

where (n )=  n! / [ (n  -- m)Im!].  
If (II) is true, we must subtract from the (~) possible configurations, 

the k (n-m) ones which give up a mismatch of type (a). Consequently, 

( k 
~ - k - I  m - j  j 

Ak,,.= ~ e~-k-j n > k >/m ( l ib )  

The algebraic system (11), (6), (5), and (4) can be solved numerically and 
g ives /8 ,  the function of the traffic demand t D. 

4. C O N C L U S I O N  

The main point in this work is the application of the simple physical 
concept of thermodynamic limit, where the number k of stages is increased 
above a critical value so that a computation of the blocking probability for 
a multistage Clos network is possible, independently of k, by a rather 
straightforward generalization of the three-stage network. 

Notice that from the very beginning, we have supposed that this 
blocking probability has a limit for k ~ 0% in contradiction to the Lee's 
approach for which this probability goes to 1 for any value of the traffic 
demand.(5) 

We want finally to point out the excellent agreement between the 
computer simulations and the theoretical results obtained without any 
introduction of a measured loaded traffic into theoretical formulas. 

Our model allows a complete relation between the blocking probability 
Ps and the two constants/~ and X, which fully characterized the dynamics 
of the system as realized in our computer simulation. 



Blocking Probability for a Multistage Clos Connecting Network 167 

R E F E R E N C E S  

1. N, Pippenger, Complexity Theory, Sc. American, June 1978. 
2. E. Bonomi, J. L. Lutton, and M. R. Feix, Telephone Networks: Statistical Mechanics and 

Non Random Procedures, Numerical Method in the Studies of Critical Phenomena, Carry 
le Rouet (France) 1 ~ juin 1980, (Springer Verlag, 1981). 

3. E. Bonomi, J. L. Lutton, and M. R. Feix, Three stage rearrangeable connecting networks 
in the thermodynamic limit: Number of needed reswitchings, to be published in I.E.E.E. 
Trans. Comm., January 1983. 

4. C. Jacobaeus, A study on congestion in link systems, Ericsson Technics 51:3 (1950). 
5. C. Y. Lee, Analysis of switching networks, BSTJ, 34(6): 1955. 
6. R. Syski, Introduction to Congestion Theory in Telephone Systems (Oliver and Boyd, 

Edinburgh and London, 1960). 
7. D. Bazlen, G. Kampe, and A. Lotze, On the influence of hunting mode and link wiring on 

the loss of link systems, in Proc. Seventh International Teletraffic Congress, Stockholm, 
1973, paper no. 232. 

8. E. Bonomi, J. L, Lutton, and M. R. Feix, Extensivit~ pour un Reseau de Close t  
Probabilit~ de Blocage, Ann. T~lkcomm. 37(5-6): 1982. 

9. J. Lenfant, Parallel permutations of data: A Bene~ network control algorithm for fre- 
quently used permutations, IEEE Trans. Comp. C-27(7):637-647 (1978). 

10. M. Karnaugh, Loss of point-to-point traffic in three stage circuit switches, IBM J. Res. 
Develop. 18(3):204-216 (1974). 


